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The Miller-Bravais and Weber symbols for planes and directions in hexagonal crystals can be interpreted 
as four-dimensional vectors, which are confined to a particular three-dimensional section of 4-space 
by the rule that the first three indices sum to zero. This is useful for the calculation of distances and 
angles in hexagonal crystals. The direction symbolized by [uvtw] is that of the cartesian 4-vector [u, v, t, 
2w] and the normal to the plane (hkil) is the cartesian vector [h, k, i, l/2], where 2= (2/3)* (c/a). The 
angle between two of these 4-vectors is given by the usual formula cos a = (rl • r2)/rlr2, and other useful 
vector equations apply to these 4-vectors just as for the 3-vectors associated with Miller indices. Seeming 
inconsistencies in the naming of axes for the reciprocal lattice of a hexagonal structure are eliminated 
by regarding the direct lattice as the projection on to three dimensions and the reciprocal lattice as the 
three-dimensional section of four-dimensional lattices reciprocal to each other. 

Introduction 

The impetus to write this note came from discovering 
that a research student could work for some years 
with hexagonal crystals and still need a stereogra_m 
or a model to ascertain whether the direction [1013], 
for example, was parallel to the plane (2111), and 
that though the author could tell him how, he could 
not easily explain why. In fact, though all who have to 
do with hexagonal crystals employ the Miller-Bravais 
notation, few exploit its capabilities to the full, the 
reason being that most students receive only an ad 
hoc exposition of the system in relation to its use in 
descriptive crystallography, which makes no attempt 
to relate it to any more general system of mathematics. 

Three dimensions for the representation of two 

It is a fairly familar device (not always explained in 
these terms) to use a three-dimensional coordinate 
system for a two-dimensional figure where that figure 
has threefold or sixfold symmetry, exploiting the 
redundant dimension to obtain a much more symme- 
trical algebraic representation, while still retaining the 
advantages of cartesian coordinates. Thus the equ- 
ations for the sides of a regular hexagon, centred 
on the origin, when expressed in two-dimensional 
cartesian coordinates (x, y): 

h x + k y  = +d  (la, lb) 

- ½ ( h + ~ 3 k ) x + ½ ( ¢ 3 h - k ) y =  +d  (lc, ld)  

- ½ ( k - ~ / 3 k ) x - ½ ( ~ 3 h + k ) y =  +_d (le, lf) 
by no means reveal the symmetry instantaneously to 
the eye" whereas if we consider the figure to be des- 
cribed on the plane 

x + y + z = O  (2) 

of a three-dimensional cartesian system the equations" 

hx + ky + iz = + d (3a, 3b) 
kx  + iy + hz = + d (3c, 3d) 
ix + hy + k z=  + d (3e, 3f) 

are simpler and more immediately revealing. 
By themselves, of course, equations ( 3 a . . . f )  define 

planes in the three-dimensional space (x,y,z)" but it is 
only the intersections of these planes with the (111) 
plane through the origin defined by (2) which we 
regard as significant. The normal from the origin to 
any one of the six planes (3a . . . f ) ,  say to the plane 
defined by (3a), is simply expressed by the equations" 

x / h = y / k = z / i ,  (4) 

or, in equivalent terms, its direction is the vector with 
components [h,k,i]. We here employ square and round 
brackets for directions and planes respectively in 
accordance with crystallographic conventions. The 
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crystallographer's custom is also to employ other let- 
ters [uvw] or [uvtw], when symbolizing a direction, 
from those, (hkl) or (hkil), which he uses to symbolize 
a plane. This extravagance in letters of the alphabet 
would be inconvenient to follow systematically in this 
paper, and will not be followed" the shape of the 
brackets must generally suffice to distinguish planes 
from directions. Now, since it is not the planes ( 3 a . . . f )  
to which we attach significance, but only the lines 
in which they intersect plane (2), it is convenient 
to arrange that this normal should lie in this plane 
and thus coincide with the normal to the appropriate 
line. That is to say, we impose the equation: 

h + k + i = O .  (5) 

We are free to do this, since, when equation (2) is 
satisfied, addition of any arbitrary constant to h, k 
and i is without effect on the validity of equations 
(3a . . . f ) .  Geometrically, the effect of this is to make 
the planes (3a . . . f ) ,  which pass through the sides of 
our hexagon, stand perpendicular to plane (2). 

For any vector we may define in this system, since 
only vectors in the plane (2) are to have significance, 
we shall likewise impose the condition, as in (5), that 
the sum of the components is zero. 

Now, the intercepts of the plane (3a) on the axes 
x,y,z are inversely proportional to h, k, and i respect- 
ively (being d/h, d/k, d/i). Thus (h, k, i) are in the 
crystallographer's sense the 'indices' of this plane. 
Since these axes are equally inclined to the plane 
(2), and planes (3) are constrained by equation (5) 
to be normal to plane (2), the intercepts on the pro- 
jections of these axes on (2), which are in the directions 
of the vectors [2,i,i], [i,2,i], and [i,i,2] respectively, 
are likewise inversely proportional to h, k, and i [being 
(2/3) ~ d/h, (2/3) ~ d/k, (2/3) ~ d/i]. (h, k, i) may thus be 
taken as the indices of the line defined by (3a) and (2), 
and these indices can be read off as the reciprocals of 
intercepts on three lines in the plane. 

Defining the normal vector to our line (hki) as 

p=[h,  k, i] (6) 

and using the general position vector 

r=[x ,  y, z] (7) 

equation (3a) becomes the simple vector equation 
defining a plane in terms of its normal from the origin: 

p . r = d .  (8) 

It is thus that, when we can retain a cartesian refer- 
ence system, the 'indices' of a plane and its normal 
correspond. 

Four dimensions for the representation of three 

Coming now to the case of a hexagonal crystal, we 
have need of a real, physical, dimension normal to the 
base plane while at the same time it remains advan- 
tageous for the representation of symmetry to use 

three dimensions, rather than two, in which to repre- 
sent coordinates in the base plane. We can satisfy 
both of these requirements by representing the crystal 
in a certain three-dimensional section of a four- 
dimensional space. In this space the general position 
vector is 

r=[x ,  y, z, w] (9) 

The four axes x, y, z and w are all orthogonal to 
each other. The section we employ is parallel to w 
and equally inclined to x, y and z, satisfying equation 
(2). Thus the sum of the first three components of r 
is always zero. There are now two directions ortho- 
gonal to each other and both orthogonal to the base 
plane x + y + z = O ,  w=constant:  these are the vectors 
[1,1,1,0] and [0,0,0,1] respectively. The first is physically 
empty, but usefully visualized for interpreting the basal 
coordinates of position: the second is physically 
occupied. It is unfortunately impossible to visualize 
both of these at once, together with the base plane, at 
least for the majority of people - -  but it is not difficult 
to visualize one or the other alternately. 

We can now define a plane in our three-dimensional 
section of four-dimensional space by the equation 

hx + ky + iz + lw / 2 = d , (10) 

in conjunction with equation (2): the reason for 
introducing the factor 1/2 will emerge presently. We 
are free, as before, to impose equation (5), which 
causes the normal 

p=[h,  k, i, l/~1 (11) 

to the hyperplane (10) to lie in our chosen three- 
dimensional section of the four-dimensional space, 
and coincide with that to the plane defined by (10) and 
(2). Equation (10) can be written as equation (8), with 
the difference of significance that the vectors now have 
four components instead of three. 

The intercepts of the hyperplane (10) on the axes 
x, y, z, w are of course d/h, d/k, d/i, 2d/l, respectively: 
but more valuable to us are the intercepts on four 
'crystallographic axes' which lie in the physical section 
of the 4-space, namely on lines from the origin in the 
directions of vectors 

[2, i , i ,  0], [i, 2, i ,  0], [1 ,1 ,2 ,0]  and [0 ,0 ,0 ,1 ] .  

These intercepts are: 

(2/3)~d/h, (2/3)~d/k, (2/3)~d/i, and 2d/l .  

Now, in the crystallographic application we have 
natural units of length (lattice parameters), a in the 
first three of these directions, and c in the fourth. 
Measured in terms of these units, the intercepts are 

(2/3)~d/ha, (2/3)÷d/ka, (2/3)~d/ia, 2d/lc. 
If we now set 

2=(2/3)~(c/a) , (12) 
the intercepts measured in natural units become 

2d/ch, 2d/ck ,  2d/ci,  2d/cl.  

A C 18 - -  3* 
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Crystallographic indices for the plane defined by (10) 
and (2) are thus (hkil). 

There is one special axial ratio for a hexagonal 
crystal, (c/a)=(3/2) ~, for which the reference system 
becomes four-dimensionally cubic. The vector which 
is normal to the plane (hkil), given in general by 
(11), is in this case [h, k, i,/], showing the same cor- 
respondence between its components and the indices 
of the plane to which it is normal, as we have in the 
case of ordinary cubic crystals. The lattice with any 
other axial ratio, (c/a), may be thought of as derived 
from this special case by an affine deformation, an 
elongation by the factor 2 along the c axis. The vector 
[h, k, i,/] thereby becomes [h, k, i, 2/], according to 
the cartesian reference system, but its crystallographic 
direction-symbol remains [hki/]. The condition that 
a line lies in, or is parallel to, a plane is one that is 
retained under affine deformation. Thus the condition 
that a direction [uvtw] lies in or is parallel to a plane 
(hkil) (the zone law) is in four-dimensional notation, 
as in three, the zero scalar product relation: 

uh + vk + ti + wl = 0.  (13) 

This was the basic fact which confirmed Weber 
(1922) in his choice of a four-index zone symbol. 

We may now summarize the relation between 
Miller-Bravais indices and vectors as follows: 

The normal to the plane crystallographically indexed 
as (hkil) is the cartesian 4-vector [h, k, i,//2]: the 
direction symbolized as [uvtw] is that of the cartesian 
4-vector [u, v, t, 2w]. 

Interconversion of coordinates 

One of the easier ways to find the four-dimensional 
components of a vector from any three-dimensional 
representation is to consider its projection on to the 
crystallographic axes al, a2, a3, c which have the direct- 
ions [2iT0], [1210], [iT20] and [0001]. The vector being 
[x, y, z, w], these projections are 

6 - * ( 2 x - y - z ) ,  6 - ' ~ ( - x + 2 y - z ) ,  
6 - ~ ( -  x -  y + 2z) , w: 

and thus by use of (2): 

(3/2)~x, (3/2)÷y, (3/2)~'z, w. (14) 

If the vector is [u, v, t, 2w] (3/2)~a, then these pro- 
jections are' 

(3/2)ua, (3/2)va, (3/2)ta, we.  (15) 

There are several different triaxial systems which 
are for various purposes convenient for the descrip- 
tion of hexagonal crystals and interconversion between 
the four component system and any one of them may 
be required. The vector equation: 

[h, k, i, 2l] (3 /2)~a=sa '+tb '+uc  ' (16) 

readily gives the conversion formulae for direction 
symbols, once the expressions in the four-component 

system for the three triaxial basis vectors a', b', c' are 
known. The conversion formulae for planes are equally 
readily obtained from the equation p .  r =  constant, 
where p=[h,  k, i, l/A] is the normal to the plane 
(hkil), by putting r=a' /s ,  b'/t, c'/u in turn (that is, by 
using the intercepts on the new axes to define Miller 
indices (stu) in the usual way). We thus obtain, apart 
from a constant multiplying factor of no importance" 

s = p . a ' ,  t = p . b ' ,  u = p . c ' ,  (17) 

these being four-component scalar products. 
Thus for the conventional hexagonal unit cell, with 

the three basis vectors 

ax = [2, 1, 1, 0] 6 - * a ,  
a2 = [i, 2, i, 0] 6 -*a ,  
c =[0, 0, 0, 1] c=[0,  0, 0, 32] 6-~a,  (18) 

we obtain the correspondences for directions" 

[hkil]-+[(h- i) ( k -  i)l] , (19) 
[stu]--~[(2s- t ), ( -  s + 2t ), ( -  s -  t ), 3u], (20) 

and for planes: 
(hkil)--~.(hkl) , (21) 
(stu)-+[st(-  s -  t )u] . (22) 

For the rhombohedral reference system, with basis 
vectors 

a ' =  [2, i, 1, 2] 6-~a ,  
b ' =  [i, 2, 1, 2] 6-~a ,  
c' =[ i ,  i, 2, 2] 6-~a ,  (23) 

we obtain 

[hki/]--+[(h + l) (k + l) (i +/)] (24) 

[stu] -+[(2s-  t -  u) ( -  s + 2 t -  u) ( -  s - t + 2u) (s 
+ t + u)] (25) 

(hkil)-+[(3h + I) (3k +/ )  (3i +/)] (26) 

(stu) ~ [ ( 3 s - t - u )  ( - s +  2 t - u )  ( - s - t  + 2u) (3s 
+ 3t + 3u)], (27) 

and for the orthorhombic reference system, with basis 
vectors 

a " =  [2, i,  T, 0] 6 - ~ a ,  
b " =  [0, 3, ~, 0] 6-~a ,  
c " =  [0, 0, 0, 32] 6-~a ,  (28) 

we obtain 

[hkil]~(1) [3h(k- i )  2/], (29) 

[stu]---~(-}) [2s(-  s + 3t ) ( -  s -  3t ) 3u] , (30) 

(hkiD-+[h(k - i)/] , (31) 

(stu) --+[2s(-s + t) ( - s - t )  2u]. (32) 

Lengths and angles: 
common planes and common directions 

The recognition that Miller-Bravais indices are essen- 
tially 4-vectors can be put to good use in calculating, 
for example, the distance between two lattice points 
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(or two points within the unit cell) or the angle between 
two specified directions. The square of the length of 
the vector r = [x, y, z, w] is 

r2 = x 2 +y2 + z 2 + w 2 . (33) 

Here the sum of the first three terms is the square of 
the basal component of length, and the last term is 
the square of the axial component. 

Given two vectors, r l= [x l ,  yl, zl, wx] and r2  = 

[x2, Y2, z2, w2], the square of the difference vector is 

(rE - r l )  2 = (x2  - x O  2 + 0 '2  - y , ) 2  + (z2 - zl) 2 
+ ( w 2 - w 0 2 = ~ + r 2 2 - 2 ( r l .  r2). (34) 

But, by the usual trigonometric formula 

(r2-rOZ=r2+r2-2rl .  r2 cos ~ (35) 

where c~ is the angle between rl and r2. Hence 

COS ¢~-----(rl • r2)/rlr2 ; (36) 

i.e. we can calculate the angle between the two vectors 
from their scalar product and a normalizing factor 
in the four-component case exactly as in the three-com- 
ponent case. The angle between directions symbo- 
lized by [hlkxiill] and [hzk2iz12] is thus given by: 

hlh2 "k klk2 "k ili2 -b ),2/1/2 
c o s u =  (h2+k2+i2+2212)~ (h2+k2+i2+2212)÷ (37) 

w h e r e  2 2 = 2c2/3a 2. 
To find the plane common to these two directions, 

when this cannot be done by inspection, it is easiest 
to convert to one of the three-axis systems, e.g. by 
(19), form the cross-product, and convert back, in 
this case by (22). For the inverse problem, of finding 
the direction common to two planes, there is some 
advantage, as already noted by Weber (1922), in 
making use of the duality between planes and direct- 
ions (faces and zone axes) basically implied by equa- 
tion (13), and thus making the conversions as though 
the planes were directions and the common direction 
a plane: in this way formally identical algorithms can 
be used for both problems. 

For the angle between the direction hlklilll and the 
plane (hEkEiE12) we have 

hlh2 -a t- klk2 + ili2 q- Ill2 
sin c~= (h~ 2 .2 ~ , ,  + k l + ~ + ; .  6) (h~+k~+i~+i~/~9~ 

(38) 

The reciprocal lattice 

The reciprocal lattice of a hexagonal lattice is a source 
of some confusion to students. It seems to be a rather 
puzzling accident that no contradiction arises from 
two alternative ways of defining the reciprocal lattice 
and the four-figure labelling of its points. By the first 
approach, the reciprocal lattice point hkil lies at a 
distance from the origin inversely as the spacings 
between (hkil) planes in the direct lattice, in a direction 
normal to these planes. This prescription yields a 
lattice, in which points are labelled as to position ac- 

cording to the four-index symbols for vectors. How- 
ever, the axes, a~, a2, a3, e*, of the reference system 
according to which they have this labelling do not 
appear to be related to the direct crystallographic 
axes in the customary way. The directions coincide, 
a~ with at and c* with c" the length of c* is c-1; the 
length of each a~ is 3 -÷ times the distance from the 
origin to the nearest actual reciprocal lattice point, 
and thus equal to (2/3)a -1. 

Quite different axes are obtained by an equally 
regular approach, according to which the primitive 
cell edges e~ of the reciprocal lattice are related to 
those, % of the direct lattice by: 

e*. e ~ = 6 ~ -  i , j ,= 1 2, 3.  (39) 
O, i=~j 

Identifying ea with al, e2 with a2, ea with c (dis- 
* identical with c* above, carding a3) we obtain an e a 

* and * in the base plane making but a pair of axes e 1 e 2 
an angle of 60 ° with each other. These axes put the 
reciprocal lattice points hk.  l in the same positions 
as the former approach, when no account is taken of 
the third index, and one may proceed blindly to restore 
this third index by using the rule h + k +  i = 0 :  but as 
they do not describe a conventional hexagonal cell, 
and do not provide a symmetrical third position for 
a third basal axis, the geometrical significance of the 
restoration of the third index is in this case a complete 

* a n d  * 60 ° apart, to change of the basal axes, from e I e2, 
al =~.e~ 1 ,  - -  .3-e2 , 

* 2 * a2 3-}e~ ( 4 0 )  = - -  + . x e  2 , 

* 1 * 1 * and a a -- - ~e x - 3-e 2 , 

120 ° apart. 
This untidiness is removed when we appreciate that 

the four-index system brings in an auxiliary dimension. 
To explain the matter in visualizable terms, let us 
consider how we generate the two-dimensional reci- 
procal lattice of a two-dimensional hexagonal direct 
lattice: the subsequent extension in the c or e* dimen- 
sion is entirely straightforward (by way of equation 
(39), with i, j =  1, 2, 3, 4). 

Let the two-dimensional hexagonal lattice D h E  ( o f  

lattice parameter a) be regarded as the projection on 
the plane x + y + z = O  of a simple cubic lattice Dea, 
having a lattice parameter ae=(3/2) ~ a, and its axes 
along x, y, z. The reciprocal lattice Rc3 of the latter is 
another simple cubic lattice, similarly oriented, with 

* (2/3)÷a -1. Those of its points lattice parameter a c = 
which lie in the plane x + y + z = O  form the required 
two-dimensional lattice R h 2  which is the reciprocal 
lattice of D/z2 ,  since these points correspond to those 
planes of De3 which are parallel to the projection axis 
[111] and appear as lattice rows in D h E .  R h 2  is a hexa- 
gonal lattice of lattice parameter 2~a * = (4/3)÷a -1, dif- 
fering in orientation by 30 ° from Dh2. The reference 
axes a~, a~, a~' of length (2/3)a -1 which appeared above 
are now seen to be the projections on x + y + z = O  of 
the cubic reciprocal lattice axes a c . 
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Since the generation of a reciprocal lattice is a 
genuinely reciprocal process we could, as an equally 
valid alternative, have employed selection of points 
on the plane x + y ÷ z = O  from a simple cubic lattice 
to represent Dh2 and would then have found that 
projection on this plane of the simple cubic reciprocal 
lattice reproduced Rh2: the imaginary simple cubic 
lattices used for these two alternative representations 
have different orientations with respect to the direct 
hexagonal lattice. 

Since selection of the points on one plane is equi- 
valent to multiplication by a plane delta function, 
since the generation of a reciprocal lattice is equivalent 
to Fourier transformation, and since the Fourier trans- 
form of a plane delta-function is a rod delta-function 
normal to that plane, the whole representation (in 
either alternative) is an application of Parseval's 
theorem, namely that the Fourier transform of the 
operation 'multiply by' is 'fold with': folding a [111] 
rod delta-function with the simple cubic lattice points 
is equivalent, after discarding the superfluous dimen- 
sion, to projection on the (111) plane. 

Of the two alternative representations (the first, in 
which  Dh2 is a projection, Rh2 a section, of a cubic 
lattice, and the second, in which Dh2 is a section, Rh2 
a projection of a cubic lattice in another orientation) 
the first is to be preferred: it is only in this represen- 

tation that names of points in Dh2 or  Rh2, according 
to customary conventions, correspond directly (save 
for scale factors) with their names in the cubic reference 
system. Now an inconsistency seems to have emerged, 
since in the earlier sections of this paper, while lattices 
were not under discussion, the re-lowering of dimen- 
sionality after introducing an auxiliary dimension was 
considered to be performed by taking a section. This 
was the effect of equation (2). However, the procedure 
in that part of the paper, which related to the descrip- 
tive crystallography of macroscopic bodies, clearly 
ought to correspond to the procedure employed for 
the representation of the direct, rather than that of 
the reciprocal lattice, namely a lowering of dimensio- 
nality by projection. The inconsistency is only apparent, 
since we also imposed equation (5); the projections and 
sections on plane (or hyperplane) (2) of all planes 
conforming to (5) are identical with each other. Pro- 
jection for real space, section for reciprocal space is 
thus the representation applying consistently through- 
out. 

The author expresses his thanks to Dr A. R. Lang 
for several discussions on these topics. 
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The metastable form of acetamide has been studied by X-ray diffraction. The crystals are orthorhombic, 
space group Pccn, a=7"76, b= 19.00, c= 9"51/~, Z=  16. There are two molecules in the asymmetric 
unit. These are bound in two-molecule units by a pair of hydrogen bonds. Further hydrogen bonds link 
these dimers together in columns parallel to c. The average bond lengths in the planar molecules are 
C-C, 1.505+0.013; C-N, 1.334+0.017; C-O, 1.260+0-011, in good agreement with those in the 
stable (trigonal) solid phase, the vapor, and in similar compounds. 

Introduction 

Acetamide, CH3CO-NH2, exists in two crystalline mod- 
ifications. The structure of the stable (trigonal) form 
has been reported by Senti & Harker (1940)t. The 

* Research performed under the auspices of the U.S. 
Atomic Energy Commission. 

t A reinvestigation of this structure is presently being car- 
ried out by Mills, Harris & Harker (1964). The original inves- 
tigation, carried out long before the age of the modern digital 
computer, is noteworthy for being the first example of the 
use of a Fourier refinement in an acentric structure. 

metastable (orthorhombic) form at room temperature 
is obtained on cooling from the melt. The two forms 
differ markedly in their behavior when irradiated by 7 
rays (Rao, 1960). The principal products obtained from 
the irradiated crystals are acetonitrile (CH3CN) and 
water. The yields per 100 eV of deposited energy are 
considerably greater for the trigonal form than for the 
orthorhombic. Since one would presume that the mol- 
ecular structure is the same in both compounds, it must 
be details of the intermolecular interaction which are 
responsible for the differences in the radiation chemi- 
stry. In particular, one might expect the hydrogen bond- 


